Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments.

نویسندگان

  • Yan Meng
  • Qi Wu
  • Lei Chen
  • Sonam Wangmo
  • Yang Gao
  • Zhigang Wang
  • Rui-Qin Zhang
  • Dajun Ding
  • Thomas A Niehaus
  • Thomas Frauenheim
چکیده

To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique

Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...

متن کامل

Studies on UV-Visible, Fluorescent Spectral Properties and Solvatochromic behavior of Naphthalimide Compound Containing Quaternary Ammonium

This paper presents the results of absorption spectra, fluorescence properties and the effect of solvents on UV-Vis spectra of dye quaternized 4-acetylamino-N-2-aminomethylpyridine-1,8-naphthalimide. The fluorescency of the dye was evaluated and its Stokes shift value was 6140 cm-1 in DMF. The solvatochromism behavior of the novel compound is investigated by studying its spectra in pure organic...

متن کامل

Defects in graphene-based twisted nanoribbons: structural, electronic, and optical properties.

We present some computational simulations of graphene-based nanoribbons with a number of half-twists varying from 0 to 4 and two types of defects obtained by removing a single carbon atom from two different sites. Optimized geometries are found by using a mix of classical quantum semiempirical computations. According with the simulations results, the local curvature of the nanoribbons increases...

متن کامل

Neutron scattering studies of disordered carbon anode materials

Carbon-based anodes show many promising properties in lithium-ion rechargeable batteries. So-called ‘disordered carbons’ are characterized by a substantial amount of residual hydrogen, and exhibit large Li uptake capacities. We have employed a variety of neutron scattering techniques, coupled with computer simulations, to study the composition, local atomic structure, and vibrational dynamics o...

متن کامل

Absorption of DCM Dye in Ethanol: Experimental and Time Dependent Density Functional Study

Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 5 24  شماره 

صفحات  -

تاریخ انتشار 2013